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Abstract In this work, firstly in the Hilbert space of vector-functions all selfadjoint
extensions of the minimal operator generated by linear singular symmetric differ-
ential expression with a selfadjoint operator coefficient A in any Hilbert space H ,
are described in terms of boundary values. Later structure of the spectrum of these
extensions is investigated.
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1 Introduction

Many problems arising in the modelling of processes of multi-particle quantum
mechanics,quantum field theory,in the physics of rigid bodies and ets support to study
selfadjoint extension of symmetric differential operators in direct sum of Hilbert spaces
[1–3].

The general theory of selfadjoint extensions of symmetric operators in any Hilbert
space and their spectral theory tall and well-built have been investigated by many
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mathematicians [4–7]. Applications of this theory to two point differential operators
in Hilbert space of functions are continied today even.

It is known that for the existence of selfadjoint extension of the any linear closed
densely defined symmetric operator B in a Hilbert space H, the necessary and suf-
ficient condition is a equality of deficiency indices m(B) = n(B), where m(B) =
dim ker(B∗ + i) , n(B) = dim ker(B∗ − i).

The table is changed in the multipoint case in the following sense. Let B1 and B2
be minimal operators generated by the linear differential expression i d

dt in the Hilbert
space of functions L2(−∞, a) and, L2(b,+∞), a < b, respectively. In this case it
is known that

(m (B1) , n (B1)) = (0, 1) ,

(m (B2) , n (B2)) = (1, 0) .

Consequently, B1 and B2 are maximal symmetric operators, but are not a selfadjoint.
However, direct sum B = B1 ⊕ B2 of operators in a direct sum H = L2(−∞, a)⊕

L2(b,+∞) spaces have an equal defect numbers (1,1). Then by the general theory it
has a selfadjoint extension. On the other hand it can be easily shown in the form that

u2(b) = eiϕu1(a), ϕ ∈ [0, 2π) , u = (u1, u2), u1 ∈ D
(
B∗

1

)
, u2 ∈ D

(
B∗

2

)
.

Note that a space of boundary values has an important role in the theory of selfadjoint
extensions of the linear symmetric differential operators [6,7].

Let B : D(B) ⊂ H → H be a closed densely defined symmetric operator in the
Hilbert space H, having equal finite or infinite deficiency indices. A triplet (H, γ1, γ2),

where H is a Hilbert space, γ1 and γ2 are linear mappings of D (B∗) into H, is called
a space of boundary values for the operator B if for any f, g ∈ D (B∗)

(
B∗ f, g

)
H − (

f, B∗g
)
H = (γ1 ( f ) , γ2 (g))H − (γ2 ( f ) , γ1 (g))H ,

while for any F1, F2 ∈ H, there exists an element f ∈ D (B∗), such that γ1 ( f ) = F1
and γ2( f ) = F2.

Note that any symmetric operator with equal deficiency indices have at least one
space of boundary values [6].

In this work in second section all selfadjoint extensions of the minimal operator
generated by multipoint symmetric differential operator of first order in the direct sum
of Hilbert spaces L2 (H, (−∞, a) ⊕ L2 (H, (b,+∞) , a < b in terms of boundary
values are described.

In third section the spectrum of such extensions is researched.

2 Description of selfadjoint extensions

Let H be a separable Hilbert space and a, b ∈ R, a < b. In the Hilbert space
L2(H, (−∞, a))⊕L2(H, (b,+∞)) of vector-functions considers the following linear
multipoint differential expression in form
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l(u) = (l1 (u1) , l2 (u2)) = (
iu ′

1 + Au1, iu ′
2 + Au2

)
, u = (u1, u2),

where A : D (A) ⊂ H → H is linear selfadjoint operator in H . In the linear manifold
D (A) ⊂ H introduce the inner product in form

( f, g)+ := (A f, Ag)H + ( f, g)H , f, g ∈ D(A).

Then D(A) is a Hilbert space under the positive norm ‖·‖+ respect to Hilbert space
H . It is denoted by H+. Denote the H− a Hilbert space with negative norm. It is clear
that a operator A is continuous from H+ to H and it’s adjoint operator Ã : H → H−
is a extension of the operator A. On the other hand, the operator Ã : D (A) = H ⊂
H−1 → H−1 is a linear selfadjoint.

From this define by

l̃(u) =
(

l̃1(u1), l̃2(u2)
)

, (2.1)

where u = (u1, u2) and l̃1 (u1) = iu ′
1 + Ã u1, l̃2 (u2) = iu ′

2 + Ã u2.
The minimal L10(L20) and maximal L1(L2) operators generated by differen-

tial expression l̃1(l̃2) in L2 (H, (−∞, a)) (L2 (H, (b,+∞))) have been investigated
in [8].

The operators defined by L0 = L10 ⊕ L20 and L = L1 ⊕ L2 in the space
L2 = L2 (H, (−∞, a)) ⊕ L2 (H, (b,+∞)) are called minimal and maximal (multi-
point) operators generated by the differential expression (2.1), respectively. Note that
the operator L0 is a symmetric and L∗

0 = L in L2. On the other hand, it is clear that,

m (L10) = 0, n (L10) = dim H,

m (L20) = dim H, n (L20) = 0.

Consequently, m (L0) = n (L0) > 0. So the minimal operator L0 has a selfadjoint
extension [4]. For example, the differential expression l (u) with a boundary condition
u (a) = u (b) generates a selfadjoint operator in L2.

Here it is described all selfadjoint extensions of the minimal operator L0 in L2 in
terms of the boundary values.

In first note that the following proposition which validity of this cleam can be easily
proved.

Theorem 2.1 The triplet (H, γ1, γ2),

γ1 : D
(
L∗

0

) → H, γ1 (u) = 1

i
√

2
(u1 (a) + u2 (b)) ,

γ2 : D
(
L∗

0

) → H, γ2 (u) = 1√
2

(u1 (a) − u2 (b)) , u = (u1, u2) ∈ D
(
L∗

0

)

is a space of boundary values of the minimal operator L0 in L2.
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Proof For the arbitrary u = (u1, u2) and v = (v1, v2) from D (L) validity the fol-
lowing equality

(Lu, v)L2 − (u, Lv)L2 = (γ1 (u) , γ2(v))H − (γ2(u), γ1(v))H

can be easily verified. Now give any elements f, g ∈ H . Find the function u =
(u1, u2) ∈ D (L) such that

γ1(u) = 1

i
√

2
(u1 (a) + u2(b)) = f and γ2(u) = 1√

2
(u1(a) − u2(b)) = g

that is,

u1(a) = (i f + g)/
√

2 and u2(b) = (i f − g)/
√

2.

If choose these functions u1 (t) , u2 (t) in following form

u1(t) = t∫
−∞

es−ads(i f + g)/
√

2, t < a,

u2(t) = ∞∫
t

eb−t ds(i f − g)/
√

2, t > b,

then it is clear that (u1, u2) ∈ D(L) and γ1(u) = f, γ2(u) = g. �


Furthermore, using the method in [6] can be established the following result.

Theorem 2.2 If L̃ is a selfadjoint extension of the minimal operator L0 in L2, then it
generates by the differential expression (2.1) and the boundary condition

u2 (b) = W u1 (a) ,

where W : H → H is a unitary operator. Moreover,the unitary operator W in H is
determined uniquely by the extension L̃, i.e., L̃ = L (W ) and vice versa.

3 The Spectrum of the selfadjoint extensions

In this section the structure of the spectrum of the selfadjoint extension LW in L2 will
be investigated.

First of all,we have to prove the following result.

Theorem 3.1 The point spectrum of selfadjoint extension LW is empty, i.e.,

σp (LW ) = ∅.
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Proof Consider the following eigenvalue problem

l̃(u) = iu ′(t) + Ã u(t) = λu(t), u ∈ L2, λ ∈ R

u2(b) = W u1(a).

From this it is obtained that

u ′ = i
(

Ã −λ
)

u, u2(b) = W u1(a), u ∈ L2, λ ∈ R.

The general solution of the last equation is

⎧
⎪⎪⎨

⎪⎪⎩

u1(t) = e
i
(

Ã −λ
)
(t−a)

f, t < a

u2(t) = e
i
(

Ã −λ
)
(t−b)

g, t > b
u2(b) = W u1(a), f, g ∈ H.

.

It is clear that for the f �= 0, g �= 0 the functions u1 /∈ L2 (H, (−∞, a)) , u2 /∈
L2 (H, (b,∞)). So for every unitary operator W we have σp (LW ) = ∅. �


Since residual spectrum of any selfadjoint operator in any Hilbert space is empty,
then furthermore the continuous spectrum of selfadjoint extensions LW of the minimal
operator L0 is investigated.

Now it will be researched the resolvent of LW generated by the differential expres-
sion l̃( ) and the boundary condition

u2(b) = W u1(a)

in the Hilbert space L2, i.e.,

{
l̃ (u) = iu′ (t) + Ã u (t) = λu (t) + f (t) , u ∈ L2, λ ∈ C, λi = I mλ > 0
u2 (b) = W u1 (a)

(3.1)

Now we will be shown that the following function

u (λ; t) = (u1 (λ; t) , u2 (λ; t)) ,

where

u1 (λ; t) = e
−i

(
λ− Ã

)
(t−a)

f ∗
λ + i

a∫
t

e
−i

(
λ− Ã

)
(t−s)

f (s) ds, t < a,

u2 (λ; t) = i
∞∫
t

e
−i

(
λ− Ã

)
(t−s)

f (s) ds, t > b,

f ∗
λ = W ∗

(
−i

∞∫
b

e
−i

(
λ− Ã

)
(b−s)

f (s)ds

)
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is a solution of the boundary value problems (3.1) in the Hilbert space L2. For this, it
is sufficient to show that

u1 (λ; t) ∈ L2 (H, (−∞, a)) ,

u2 (λ; t) ∈ L2 (H, (b,+∞))

for the case λi > 0. Indeed, in this case

|| fλ
∗||2H =

∥∥∥∥−i
∞∫
b

e
−i

(
λ− Ã

)
(b−s)

f (s)ds

∥∥∥∥

2

H
≤

(∞∫
b

eλi (b−s)‖ f (s) ‖H ds

)2

≤
(∞∫

b
e2λi (b−s)ds

)(∞∫
b

‖ f (s) ‖2
H ds

)
= 1

2λi
‖ f ‖2

L2(H,(b,+∞))
< ∞,

‖e
−i

(
λ− Ã

)
(t−a)

fλ
∗‖2

L2(H,(−∞,a))
= ‖e−iλ(t−a) fλ

∗‖2
L2(H,(−∞,a))

= a∫
−∞

‖e−iλ(t−a) fλ
∗‖2

H dt

= a∫
−∞

e2λi (t−a)dt‖ fλ
∗‖2

H

= 1

2λi
‖ fλ

∗‖2
H < ∞

and

∥∥
∥∥i

a∫
t

e
−i

(
λ− Ã

)
(t−s)

f (s) ds

∥∥
∥∥

2

L2(H,(−∞,a))

≤ a∫
−∞

(
a∫
t

eλi (t−s)‖ f (s) ‖H ds

)2

dt

≤ a∫
−∞

(
a∫
t

eλi (t−s)ds

) (
a∫
t

eλi (t−s)‖ f (s) ‖2ds

)
dt

= 1

λi

a∫
−∞

a∫
t

eλi (t−s)‖ f (s) ‖2dsdt = 1

λi

a∫
−∞

(
s∫

−∞
eλi (t−s)‖ f (s) ‖2dt

)
ds

= 1

λi

a∫
−∞

(
s∫

−∞
eλi (t−s)dt

)
‖ f (s) ‖2ds = 1

λ2
i

a∫
−∞

‖ f (s) ‖2ds

= 1

λ2
i

‖ f ‖2
L2(H,(−∞,a))

< ∞.

Furthermore,

∥∥∥∥i
∞∫
t

e−i(λ− Ã)(t−s) f (s) ds

∥∥∥∥
L2(H,(b,+∞))

≤ ∞∫
b

(∞∫
t

eλi (t−s)‖ f (s) ‖H ds

)2

dt

≤ ∞∫
b

(∞∫
t

eλi (t−s)ds

)(∞∫
t

eλi (t−s)‖ f (s)‖2ds

)
dt

= 1

λi

∞∫
b

(∞∫
t

eλi (t−s)‖ f (s) ‖2ds

)
dt
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= 1

λi

∞∫
b

(
s∫
b

eλi (t−s)‖ f (s) ‖2dt

)
ds

= 1

λi

∞∫
b

(
s∫
b

eλi (t−s)dt

)
‖ f (s) ‖2ds

= 1

λ2
i

(∞∫
b

(
1 − eλi (b−s)

)
‖ f (s) ‖2ds

)

≤ 1

λ2
i

‖ f ‖2
L2(H,(b,+∞))

< ∞.

From above calculations imply that u1 (λ; t) ∈ L2 (H, (−∞, a)) , u2 (λ; t) ∈
L2 (H, (b,+∞)) for λ ∈ C, λi = I mλ > 0. On the other hand it can be to easy to
verify that u (λ; t) is a solution of the boundary value problem (3.1).

In the case when λ ∈ C, λi = I mλ < 0 solution of the boundary value problem

LW u = iu′ + Ã u = λu + f, u = (u1, u2) , f ∈ L2

u2 (b) = W u1 (a) ,

where W is a unitary operator in H , is in the form u (λ; t) = (u1 (λ; t) , u2 (λ; t) ),

⎧
⎪⎪⎨

⎪⎪⎩

u1(λ; t) = −i
t∫

−∞
e−i(λ−Ã)(t−s) f (s)ds, t < a

u2(λ; t) = e−i(λ− Ã)(t−b)g∗
λ − i

t∫
b

e−i(λ−Ã)(t−s) f (s)ds, t > b,

g∗
λ = W (−i∫a−∞e−i(λ−Ã)(a−s) f (s)ds).

In first prove that u (λ; t) ∈ L2. In this case

‖u1 (λ; t) ‖2
L2(H,(−∞,a))

= a∫
−∞

∥
∥∥∥−i

t∫
−∞

e
−i

(
λ−Ã

)
(t−s) f (s) ds

∥
∥∥∥

2

H
dt

≤ a∫
−∞

(
t∫

−∞
eλi (t−s)ds

) (
t∫

−∞
eλi (t−s)‖ f (s) ‖2

H ds

)
dt

= 1

|λi |
a∫

−∞
t∫

−∞
eλi (t−s)‖ f (s) ‖2

H ds dt

= 1

|λi |
a∫

−∞

(
a∫
s

eλi (t−s)‖ f (s) ‖2
H dt

)
ds

= 1

|λi |
a∫

−∞

(
a∫
s

eλi (t−s)dt

)
‖ f (s) ‖2

H ds

= 1

|λi |2
a∫

−∞

(
1 − eλi (a−s)

)
‖ f (s) ‖2

H ds
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≤ 1

|λi |2
‖ f ‖2

L2(H,(−∞,a))
< ∞,

‖g∗
λ‖2

H =
∥∥∥
∥−i

a∫
−∞

e
−i

(
λ−Ã

)
(a−s)

f (s) ds

∥∥∥
∥

2

H

≤
(

a∫
−∞

eλi(a−s)‖ f (s) ‖H ds

)2

≤
(

a∫
−∞

e2λi (a−s)ds

)(
a∫

−∞
‖ f (s) ‖2

H ds

)

= 1

2 |λi | ‖ f ‖2
L2(H,(−∞,a))

< ∞,

‖e−i(λ−Ã)(t−b)gλ
∗‖2

L2(H,(b,+∞))

≤ ∞∫
b

e2λi(t−b)dt‖gλ
∗‖2

H = 1

2|λi | ‖gλ
∗‖2

H

≤ 1

4 |λi |2
‖ f ‖2

L2(H,(b,+∞))
< ∞,

and

∥∥∥∥−i
t∫
b

e
−i

(
λ−Ã

)
(t−s) f (s) ds

∥∥∥∥

2

L2(H,(b,+∞))

≤ ∞∫
b

(
t∫
b

eλi(t−s)‖ f (s) ‖H ds

)2

dt

≤ ∞∫
b

(
t∫
b

eλi(t−s)ds

)

×
((

t∫
b

eλi(t−s)‖ f (s) ‖2
H ds

))
dt

= ∞∫
b

(
1

λi

(
1 − eλi (t−b)

))

×
(

t∫
b

eλi (t−s)‖ f (s) ‖2
H ds

)
dt

≤ 1

|λi |
∞∫
b

(
t∫
b

eλi (t−b)‖ f (s) ‖2
H ds

)
dt

= 1

|λi |
∞∫
b

(∞∫
s

eλi (t−s)‖ f (s) ‖2
H dt

)
ds

= 1

|λi |
∞∫
b

(
b∫
s

eλi (t−s)dt

)
‖ f (s) ‖2

H ds

= 1

|λi |2
‖ f ‖2

L2(H,(b,+∞))
< ∞.

The above simple calculations are shown that u1 (λ; ·) ∈ L2 (H, (−∞, a)), u2 (λ; ·) ∈
L2 (H, (b,+∞)) , i.e., u (λ; ·) ∈ L2 in the case when λ ∈ C, λi = I mλ < 0.
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On the other hand it can be verified that the function u (λ; ·) satisfy the equation
l̃ u (λ; ·) = iu′ (λ; ·) + Ã u (λ; ·) = λu (λ; ·) + f and u2 (b) = W u1 (a).

Hence the following result has been proved.

Theorem 3.2 For the resolvent set ρ (LW ) is valid

ρ (LW ) ⊃ {λ ∈ C : I mλ �= 0} .

Now will be researched continuous spectrum σc (LW ) of the extension LW .
For the λ ∈ C, λi = I mλ > 0 the norm of resolvent operator Rλ (LW ) of the LW

is in form

‖Rλ(LW ) f (t)‖2
L2 = ‖e−i(λ− Ã)(t−a) f ∗

λ + i
a∫
t

e−i(λ− Ã)(t−s) f1(s)ds‖2
L2(H,(−∞,a))

+‖i
∞∫
t

e−i(λ− Ã)(t−s) f2(s)ds‖2
L2(H,(b,+∞))

f ∈ L2, f = ( f1, f2).

Then it is clear that for any f = ( f1, f2) ∈ L2 is true

‖Rλ (LW ) f (t) ‖2
L2 ≥ ‖i

∞∫
t

e−i(λ− Ã)(t−s) f2 (s) ds‖2
L2(H,(b,+∞))

.

The vector functions f ∗ (λ; t) in form f ∗(λ; t) = (0, e−i(λ̄ − Ã)t f ), λ ∈ C, λi =
I mλ > 0, f ∈ H belong to L2. Indeed,

‖ f ∗ (λ; t) ‖2
L2 = ∫

b

∞‖e−i(λ̄− Ã)t f ‖2

H dt = ∫
b

∞e−2λi t dt‖ f ‖H
2 = 1

2λi
e−2λi b < ∞.

For the such functions f ∗ (λ; ·) we have

‖Rλ(LW ) f ∗(λ; t)‖2
L2(H,(b,+∞))

≥ ‖i
∞∫
t

e−i(λ− Ã)(t−s)e−i(λ̄ − Ã)s f ds‖2
L2(H,(b,+∞))

= ‖ ∞∫
t

e−iλt e−2λi sei Ã t f ds‖2
L2(H,(b,+∞))

= ‖e−iλt ei Ã t
∞∫
t

e−2λi s f ds‖2
L2(H,(b,+∞))

= ‖e−iλt
∞∫
t

e−2λi sds‖2
L2(H,(b,+∞))

‖ f ‖2
H

= 1

4λ2
i

∞∫
b

e−2λi t dt‖ f ‖2
H = 1

8λ3
i

e−2λi b‖ f ‖2
H .

From this

‖Rλ (LW ) f ∗ (λ; ·) ‖L2 ≥ e−λi b

2
√

2λi
√

λi
‖ f ‖H = 1

2λi
‖ f ∗ (λ; ·) ‖L2
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i.e., for λi = I mλ > 0 and f �= 0 are valid

∥∥Rλ (LW ) f ∗ (λ; ·)L2

∥∥
∥∥ f ∗ (λ; ·)L2

∥∥ ≥ 1

2λi
.

On the other hand it is clear that

‖Rλ (LW )‖ ≥
∥∥Rλ (LW ) f ∗ (λ; ·)L2

∥∥
∥∥ f ∗ (λ; ·)L2

∥∥ , f �= 0.

Consequently, we have

‖Rλ (LW ) ‖ ≥ 1

2λi
for λ ∈ C, λi = I mλ > 0.

Actually, this has been proved the following claim.

Theorem 3.3 Continuous spectrum of the extension LW in form

σc (LW ) = R.

Example By the last theorem the spectrum of following boundary value problem

i
∂u (t, x)

∂t
− ∂2u (t, x)

∂x2 = f (t, x) , |t | > 1, x ∈ [0, 1] ,

u (1, x) = eiϕu (−1, x) , ϕ ∈ [0, 2π) ,

u ′
x (t, 0) = u ′

x (t, 1) = 0, |t | > 1,

in the space L2 ((−∞,−1) × (0, 1)) ⊕ L2 ((1,∞) × (0, 1)) is continuous and coin-
cides with R.

Later on, note that another approach has been given in [9] for the singular differ-
ential operators for nth order in scalar case.
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